On a characterization of an invariant Gaussian measure for linear semigroups

Samir EL Mourchid

Department of Mathematics, Faculty of Sciences Ibn Zohr University, Agadir

Nice, November 25, 2015

$$X_0 \sim \mu \Rightarrow X_t = T_t(X_0) \sim \mu \circ T_t^{-1}.$$

 μ is (T_t) -invariant if:

$$\mu(T_t^{-1}(E)) = \mu(E), \ \forall t > 0, \ \forall E \in \mathcal{B}(X)$$

Why Gaussian measure in a separable Banach X?

$$X_0 \sim \mu \Rightarrow X_t = T_t(X_0) \sim \mu \circ T_t^{-1}.$$

 μ is (T_t) -invariant if:

$$\mu(T_t^{-1}(E)) = \mu(E), \ \forall t > 0, \ \forall E \in \mathcal{B}(X)$$

Why Gaussian measure in a separable Banach X? Uniquely defined by its Mean m:

$$\langle x^*, m \rangle = \int_X \langle x^*, x \rangle d\mu(x),$$

$$X_0 \sim \mu \Rightarrow X_t = T_t(X_0) \sim \mu \circ T_t^{-1}.$$

 μ is (T_t) -invariant if:

$$\mu(T_t^{-1}(E)) = \mu(E), \ \forall t > 0, \ \forall E \in \mathcal{B}(X)$$

Why Gaussian measure in a separable Banach X? Uniquely defined by its Mean m:

$$\langle x^*, m \rangle = \int_X \langle x^*, x \rangle d\mu(x),$$

and its covariance operator $R_{\mu}:X^* o X$

$$\langle y^*, R_{\mu} x^* \rangle = \int_X \langle x^*, z \rangle \langle y^*, z \rangle d\mu(z)$$
, for every x^*, y^* in X^*

→ロト ◆回ト ◆差ト ◆差ト 差 めなべ

$$X_0 \sim \mu \Rightarrow X_t = T_t(X_0) \sim \mu \circ T_t^{-1}.$$

 μ is (T_t) -invariant if:

$$\mu(T_t^{-1}(E)) = \mu(E), \ \forall t > 0, \ \forall E \in \mathcal{B}(X)$$

Why Gaussian measure in a separable Banach X? Uniquely defined by its Mean m:

$$\langle x^*, m \rangle = \int_X \langle x^*, x \rangle d\mu(x),$$

and its covariance operator $R_{\mu}:X^* o X$

$$\langle y^*, R_\mu x^* \rangle = \int_X \langle x^*, z \rangle \langle y^*, z \rangle d\mu(z), \text{ for every } x^*, y^* \text{ in } X^*$$

Invariance~ Generator! Question raised by R. Rudnicki

Theorem

(EL M 2015) A centred Gaussian measure μ , on X with covariance operator R_{μ} , is invariant if and only if $AR_{\mu} + R_{\mu}A^* = 0$ holds on $D(A^*)$.

Proof.

Assume μ invariant, $R_{\mu} = T(t)R_{\mu}T^{*}(t)$, for all $t \geq 0$, and let $x^{*} \in D(A^{*})$.

$$\lim_{t\to 0} \langle \frac{1}{t} (T^*(t) - I) x^*, x \rangle = \langle A^* x^*, x \rangle, \text{ for all } x \in X.$$

By uniform boundednes principle $(\frac{1}{t}(T^*(t)-I)x^*)_{0< t<1}$ is bounded in X^* .

$$(\forall (t_n) \to 0) \; rac{1}{t_n} (T(t_n) R_\mu x^* - R_\mu x^*) = rac{1}{t_n} (T(t_n) R_\mu x^* - T(t_n) R_\mu T^*(t_n) x^*), \ = rac{1}{t_n} T(t_n) R_\mu (x^* - T^*(t_n) x^*).$$

Proof

 $R_{\mu}: X^* \to X$ compact:

$$\exists (t_{n_k}) \ (R_{\mu} \frac{1}{t_{n_k}} (x^* - T^*(t_{n_k})x^*))_k \to w.$$

Claim: $w = -R_{\mu}A^*x^*$,

For y^* arbitrarily in X^* . Write

$$\langle y^*, w \rangle = \lim_{k \to \infty} \langle y^*, R_{\mu} \frac{1}{t_{n_k}} (x^* - T^*(t_{n_k})x^*) \rangle,$$

$$= \lim_{k \to \infty} \langle \frac{1}{t_{n_k}} (x^* - T^*(t_{n_k})x^*), R_{\mu}y^* \rangle,$$

$$= \langle -A^*x^*, R_{\mu}y^* \rangle,$$

$$= \langle y^*, -R_{\mu}A^*x^* \rangle.$$

We deduce that,

$$\forall (t_n) \to 0, \ \exists (t_{n_k}) \ \lim_k \frac{1}{t_{n_k}} (T(t_{n_k}) R_\mu x^* - R_\mu x^*) = -R_\mu A^* x^*$$

Finally, $R_{\mu}x^* \in D(A)$ and $AR_{\mu}x^* = -R_{\mu}A^*x^*$.

Samir EL Mourchid (Agadir) Ergodic approach Workshop 4 / 10

The Converse's Proof

Let t > 0, $h \neq 0$ and $x^* \in D(A^*)$. We have

$$\frac{1}{h}(T_{t+h}R_{\mu}T_{t+h}^{*}x^{*} - T_{t}R_{\mu}T_{t}^{*}x^{*}) = T_{t+h}R_{\mu}\frac{1}{h}[T_{t+h}^{*} - T_{t}^{*}]x^{*},
+ \frac{1}{h}[T_{t+h} - T_{t}]R_{\mu}T_{t}^{*}x^{*}.$$

The first term converges to $T_t R_\mu A^* T_t^* x^*$ (Compactness again!.) The second term converges to $T_t A R_\mu T_t^* x^*$. we obtain

$$\lim_{h\to 0} \frac{1}{h} (T(t+h)R_{\mu}T^*(t+h)x^* - T(t)R_{\mu}T^*(t)x^*) = T(t)[R_{\mu}A^* + AR_{\mu}]T^*x^* = 0.$$

Hence for all t > 0,

$$T(t)R_{\mu}T^{*}(t) = R_{\mu}, \text{ on, } D(A^{*}).$$

←□ → ←□ → ←□ → □ → ○○○

Converse's Proof

To conclude:

For all $y^* \in X^*$,

$$\langle \cdot, R_{\mu} y^* \rangle = \langle \cdot, T(t) R_{\mu} T^*(t) y^* \rangle,$$

on the weak*-dense subspace $D(A^*)$.

The two mapping are weak*-continuous

Thus,

$$R_{\mu}y^* = T(t)R_{\mu}T^*(t)y^*$$

holds for all $y^* \in X^*$.

Mixing in $L^p(\Omega, d\sigma)$ (joint work with K.Latrach(DIE 2013))

 $(\Omega,\mathfrak{B},\sigma)$ σ -finite measure space, and let $X:=L^p(\Omega,d\sigma),\ 1\leq p<+\infty$. Assume that X is separable, and A is the generator of a C_0 -semigroup $T(\cdot)$ on X. Discrete case(F. Bayart and É. Matheron, *Dynamics of linear operators*, Cambridge Tracts in Maths vol 179, (2009).)

Theorem

Assume $\sigma_p(A) \cap i\mathbb{R} \subset i(\omega_1, \omega_2)$ for some ω_1 and ω_2 , and there is a measurable function $u: (\omega_1, \omega_2) \mapsto X$ satisfying the following conditions:

- (i) $u_s := u(s) \in \ker(is A)$ for a.e. $s \in (\omega_1, \omega_2)$,
- (ii) $(\int_{\omega_1}^{\omega_2} |u_s(\cdot)|^2 ds)^{\frac{1}{2}} = v(\cdot) \in L^p(\Omega),$
- (iii) $span\{u_s, s \in (\omega_1, \omega_2) \setminus N\}$ is dense in X for every subset N with zero Lebesgue measure.

Then there exists an invariant Gaussian measure ν , such that supp $(\nu) = X$ with respect to which $T(\cdot)$ is strong mixing.

Mixing Translation in $L^p(I, \rho(x)dx)$

$$T(t)f(x) = f(x+t), x \in I, t \ge 0$$

Proposition

If $\int_I \rho(x) dx < \infty$, then there exists an invariant Gaussian measure with full support with respect to which $T(\cdot)$ is strong mixing.

abnormal cell division model

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} = -\frac{\partial (xu(t,x))}{\partial x} + \gamma(x)u(t,x) - \beta(x)u(t,x) + 4\beta(2x) \ u(t,2x) \ \chi_{(0,\frac{1}{2})}(x), \\ u(0,\cdot) = \phi \in L^1(0,1). \end{cases}$$

$$v(y) = u(e^{-y}, y > 0)$$

$$\begin{cases} \frac{\partial v(t,y)}{\partial t} = e^{y} \frac{\partial (e^{-y}v(t,y))}{\partial y} + \gamma v(t,y) - \beta v(t,y) + 4\beta v(t,y - \ln 2) \chi_{(\ln 2,\infty)}(y) \\ v(0,\cdot) = \psi \in L^{1}((0,\infty), e^{-y}dy), \end{cases}$$

Under $\gamma - 3\beta > 0$, $0 \le \beta \le \frac{1}{2}$ The solution is chaotic + existence of a strongly mixing non degenerate Gaussian measure.

◆ロ → ◆回 → ◆ 直 → ◆ 直 ・ り へ ○

abnormal cell division model

$$\begin{cases} \frac{\partial u(t,x)}{\partial t} = -\frac{\partial (xu(t,x))}{\partial x} + \gamma(x)u(t,x) - \beta(x)u(t,x) + 4\beta(2x) u(t,2x) \chi_{(0,\frac{1}{2})}(x), \\ u(0,\cdot) = \phi \in L^1(0,1). \end{cases}$$

$$v(y)=u(e^{-y},\ y>0)$$

$$\begin{cases} \frac{\partial v(t,y)}{\partial t} = e^{y} \frac{\partial (e^{-y}v(t,y))}{\partial y} + \gamma v(t,y) - \beta v(t,y) + 4\beta v(t,y - \ln 2) \chi_{(\ln 2,\infty)}(y) \\ v(0,\cdot) = \psi \in L^{1}((0,\infty), e^{-y}dy), \end{cases}$$

Under $\gamma - 3\beta > 0$, $0 \le \beta \le \frac{1}{2}$ The solution is chaotic + existence of a strongly mixing non degenerate Gaussian measure.

< ロ ト ← 個 ト ← 重 ト ← 重 ・ 夕 Q (~)

Thank you for your attention