On a characterization of an invariant Gaussian measure for linear semigroups

Samir EL Mourchid

Department of Mathematics, Faculty of Sciences Ibn Zohr University, Agadir

Nice, November 25, 2015

Preliminaries

$$
X_{0} \sim \mu \Rightarrow X_{t}=T_{t}\left(X_{0}\right) \sim \mu \circ T_{t}^{-1}
$$

μ is $\left(T_{t}\right)$-invariant if:

$$
\mu\left(T_{t}^{-1}(E)\right)=\mu(E), \forall t>0, \forall E \in \mathcal{B}(X)
$$

Why Gaussian measure in a separable Banach X ?

Preliminaries

$$
X_{0} \sim \mu \Rightarrow X_{t}=T_{t}\left(X_{0}\right) \sim \mu \circ T_{t}^{-1}
$$

μ is $\left(T_{t}\right)$-invariant if:

$$
\mu\left(T_{t}^{-1}(E)\right)=\mu(E), \forall t>0, \forall E \in \mathcal{B}(X)
$$

Why Gaussian measure in a separable Banach X ? Uniquely defined by its Mean m :

Preliminaries

$$
X_{0} \sim \mu \Rightarrow X_{t}=T_{t}\left(X_{0}\right) \sim \mu \circ T_{t}^{-1} .
$$

μ is $\left(T_{t}\right)$-invariant if:

$$
\mu\left(T_{t}^{-1}(E)\right)=\mu(E), \forall t>0, \forall E \in \mathcal{B}(X)
$$

Why Gaussian measure in a separable Banach X ? Uniquely defined by its Mean m :

$$
\left\langle x^{*}, m\right\rangle=\int_{X}\left\langle x^{*}, x\right\rangle d \mu(x)
$$

and its covariance operator $R_{\mu}: X^{*} \rightarrow X$

Preliminaries

$$
X_{0} \sim \mu \Rightarrow X_{t}=T_{t}\left(X_{0}\right) \sim \mu \circ T_{t}^{-1} .
$$

μ is $\left(T_{t}\right)$-invariant if:

$$
\mu\left(T_{t}^{-1}(E)\right)=\mu(E), \forall t>0, \forall E \in \mathcal{B}(X)
$$

Why Gaussian measure in a separable Banach X ? Uniquely defined by its Mean m :

$$
\left\langle x^{*}, m\right\rangle=\int_{X}\left\langle x^{*}, x\right\rangle d \mu(x),
$$

and its covariance operator $R_{\mu}: X^{*} \rightarrow X$

$$
\left\langle y^{*}, R_{\mu} x^{*}\right\rangle=\int_{X}\left\langle x^{*}, z\right\rangle\left\langle y^{*}, z\right\rangle d \mu(z), \text { for every } x^{*}, y^{*} \text { in } X^{*}
$$

Invariance~ Generator! Question raised by R. Rudnicki

Theorem

(EL M 2015) A centred Gaussian measure μ, on X with covariance operator R_{μ}, is invariant if and only if $A R_{\mu}+R_{\mu} A^{*}=0$ holds on $D\left(A^{*}\right)$.

Proof.
Assume μ invariant, $R_{\mu}=T(t) R_{\mu} T^{*}(t)$, for all $t \geq 0$, and let $x^{*} \in D\left(A^{*}\right)$.

$$
\lim _{t \rightarrow 0}\left\langle\frac{1}{t}\left(T^{*}(t)-I\right) x^{*}, x\right\rangle=\left\langle A^{*} x^{*}, x\right\rangle, \text { for all } x \in X
$$

By uniform boundednes principle $\left(\frac{1}{t}\left(T^{*}(t)-I\right) x^{*}\right)_{0<t<1}$ is bounded in X^{*}.

$$
\begin{aligned}
\left(\forall\left(t_{n}\right) \rightarrow 0\right) \frac{1}{t_{n}}\left(T\left(t_{n}\right) R_{\mu} x^{*}-R_{\mu} x^{*}\right) & =\frac{1}{t_{n}}\left(T\left(t_{n}\right) R_{\mu} x^{*}-T\left(t_{n}\right) R_{\mu} T^{*}\left(t_{n}\right) x^{*}\right), \\
& =\frac{1}{t_{n}} T\left(t_{n}\right) R_{\mu}\left(x^{*}-T^{*}\left(t_{n}\right) x^{*}\right) .
\end{aligned}
$$

Proof

$R_{\mu}: X^{*} \rightarrow X$ compact:
$\exists\left(t_{n_{k}}\right)\left(R_{\mu} \frac{1}{t_{n_{k}}}\left(x^{*}-T^{*}\left(t_{n_{k}}\right) x^{*}\right)\right)_{k} \rightarrow w$.
Claim: $w=-R_{\mu} A^{*} x^{*}$,
For y^{*} arbitrarily in X^{*}. Write

$$
\begin{aligned}
\left\langle y^{*}, w\right\rangle & =\lim _{k \rightarrow \infty}\left\langle y^{*}, R_{\mu} \frac{1}{t_{n_{k}}}\left(x^{*}-T^{*}\left(t_{n_{k}}\right) x^{*}\right)\right\rangle, \\
& =\lim _{k \rightarrow \infty}\left\langle\frac{1}{t_{n_{k}}}\left(x^{*}-T^{*}\left(t_{n_{k}}\right) x^{*}\right), R_{\mu} y^{*}\right\rangle, \\
& =\left\langle-A^{*} x^{*}, R_{\mu} y^{*}\right\rangle, \\
& =\left\langle y^{*},-R_{\mu} A^{*} x^{*}\right\rangle .
\end{aligned}
$$

We deduce that,

$$
\forall\left(t_{n}\right) \rightarrow 0, \exists\left(t_{n_{k}}\right) \lim _{k} \frac{1}{t_{n_{k}}}\left(T\left(t_{n_{k}}\right) R_{\mu} x^{*}-R_{\mu} x^{*}\right)=-R_{\mu} A^{*} x^{*}
$$

Finally, $R_{\mu} x^{*} \in D(A)$ and $A R_{\mu} x^{*}=-R_{\mu} A^{*} x^{*}$.

The Converse's Proof

Let $t>0, h \neq 0$ and $x^{*} \in D\left(A^{*}\right)$. We have

$$
\begin{aligned}
\frac{1}{h}\left(T_{t+h} R_{\mu} T_{t+h}^{*} x^{*}-T_{t} R_{\mu} T_{t}^{*} x^{*}\right) & =T_{t+h} R_{\mu} \frac{1}{h}\left[T_{t+h}^{*}-T_{t}^{*}\right] x^{*}, \\
& +\frac{1}{h}\left[T_{t+h}-T_{t}\right] R_{\mu} T_{t}^{*} x^{*} .
\end{aligned}
$$

The first term converges to $T_{t} R_{\mu} A^{*} T_{t}^{*} x^{*}$ (Compactness again!.) The second term converges to $T_{t} A R_{\mu} T_{t}^{*} x^{*}$.
we obtain
$\lim _{h \rightarrow 0} \frac{1}{h}\left(T(t+h) R_{\mu} T^{*}(t+h) x^{*}-T(t) R_{\mu} T^{*}(t) x^{*}\right)=T(t)\left[R_{\mu} A^{*}+A R_{\mu}\right] T^{*} x^{*}=0$.
Hence for all $t>0$,

$$
T(t) R_{\mu} T^{*}(t)=R_{\mu}, \text { on, } D\left(A^{*}\right)
$$

Converse's Proof

To conclude:
For all $y^{*} \in X^{*}$,

$$
\left\langle\cdot, R_{\mu} y^{*}\right\rangle=\left\langle\cdot, T(t) R_{\mu} T^{*}(t) y^{*}\right\rangle
$$

on the weak*-dense subspace $D\left(A^{*}\right)$.
The two mapping are weak*-continuous
Thus,

$$
R_{\mu} y^{*}=T(t) R_{\mu} T^{*}(t) y^{*}
$$

holds for all $y^{*} \in X^{*}$.

Mixing in $L^{p}(\Omega, d \sigma)$ (joint work with K.Latrach(DIE 2013))
$(\Omega, \mathfrak{B}, \sigma) \sigma$-finite measure space, and let $X:=L^{p}(\Omega, d \sigma), 1 \leq p<+\infty$. Assume that X is separable, and A is the generator of a C_{0}-semigroup $T(\cdot)$ on X. Discrete case(F. Bayart and É. Matheron, Dynamics of linear operators, Cambridge Tracts in Maths vol 179, (2009).)

Theorem

Assume $\sigma_{p}(A) \cap i \mathbb{R} \subset i\left(\omega_{1}, \omega_{2}\right)$ for some ω_{1} and ω_{2}, and there is a measurable function $u:\left(\omega_{1}, \omega_{2}\right) \mapsto X$ satisfying the following conditions:
(i) $u_{s}:=u(s) \in \operatorname{ker}(i s-A)$ for a.e. $s \in\left(\omega_{1}, \omega_{2}\right)$,
(ii) $\left(\int_{\omega_{1}}^{\omega_{2}}\left|u_{s}(\cdot)\right|^{2} d s\right)^{\frac{1}{2}}=v(\cdot) \in L^{p}(\Omega)$,
(iii) $\operatorname{span}\left\{u_{s}, s \in\left(\omega_{1}, \omega_{2}\right) \backslash N\right\}$ is dense in X for every subset N with zero Lebesgue measure.
Then there exists an invariant Gaussian measure ν, such that $\operatorname{supp}(\nu)=X$ with respect to which $T(\cdot)$ is strong mixing.

Mixing Translation in $L^{P}(I, \rho(x) d x)$

$$
T(t) f(x)=f(x+t), x \in I, t \geq 0
$$

Proposition
If $\int_{I} \rho(x) d x<\infty$, then there exists an invariant Gaussian measure with full support with respect to which $T(\cdot)$ is strong mixing.

abnormal cell division model

$$
\begin{aligned}
& \frac{\partial u(t, x)}{\partial t}=-\frac{\partial(x u(t, x))}{\partial x}+\gamma(x) u(t, x)-\beta(x) u(t, x)+4 \beta(2 x) u(t, 2 x) \chi_{\left(0, \frac{1}{2}\right)}(x), \\
& u(0, \cdot)=\phi \in L^{1}(0,1) .
\end{aligned}
$$

$$
v(y)=u\left(e^{-y}, y>0\right)
$$

$$
\frac{\partial v(t, y)}{\partial t}=e^{y} \frac{\partial\left(e^{-y} v(t, y)\right)}{\partial y}+\gamma v(t, y)-\beta v(t, y)+4 \beta v(t, y-\ln 2) \chi_{(\ln 2, \infty)}(y)
$$

$$
v(0, \cdot)=\psi \in L^{1}\left((0, \infty), e^{-y} d y\right)
$$

Under $\gamma-3 \beta>0,0 \leq \beta \leq \frac{1}{2}$ The solution is chaotic + existence of a strongly mixing non degenerate Gaussian measure.

abnormal cell division model

$$
\begin{aligned}
& \frac{\partial u(t, x)}{\partial t}=-\frac{\partial(x u(t, x))}{\partial x}+\gamma(x) u(t, x)-\beta(x) u(t, x)+4 \beta(2 x) u(t, 2 x) \chi_{\left(0, \frac{1}{2}\right)}(x), \\
& u(0, \cdot)=\phi \in L^{1}(0,1) .
\end{aligned}
$$

$$
v(y)=u\left(e^{-y}, y>0\right)
$$

$\frac{\partial v(t, y)}{\partial t}=e^{y} \frac{\partial\left(e^{-y} v(t, y)\right)}{\partial y}+\gamma v(t, y)-\beta v(t, y)+4 \beta v(t, y-\ln 2) \chi_{(\ln 2, \infty)}(y)$
$v(0, \cdot)=\psi \in L^{1}\left((0, \infty), e^{-y} d y\right)$,
Under $\gamma-3 \beta>0,0 \leq \beta \leq \frac{1}{2}$ The solution is chaotic + existence of a strongly mixing non degenerate Gaussian measure.

Thank you for your attention

